
Polynomial Time Approximation Scheme for
Connected Vertex Cover in Unit Disk Graph

Zhao Zhang1,�, Xiaofeng Gao2,��, and Weili Wu2,��

1 College of Mathematics and System Sciences, Xingjiang University,
Urmuqi, Xinjiang, China

zhzhao@xju.edu.cn
2 Department of Computer Science, University of Texas at Dallas,

Richardson, TX 75083, USA
{xxg05200,weiliwu}@utdallas.edu

Abstract. Connected Vertex Cover Problem (CVC) is an NP -hard
problem. The currently best known approximation algorithm for CVC
has performance ration 2. This paper gives the first Polynomial Time
Approximation Scheme for CVC in Unit Disk Graph.

Keywords: Connected Vertex Cover, Unit Disk Graph.

1 Introduction

Minimum Vertex Cover Problem (MVC) is a classical optimization problem in
graph and combinatorial theory. For a undirected graph G = (V, E), a subset
C ⊆ V is called a vertex cover of G (VC) if for any (v, w) ∈ E, either v ∈ C or
w ∈ C. MVC is to find a vertex cover of G with the minimum number of vertices.
This problem has many real-world applications [3], including many in the field
of bioinformatics. It can also be used in the construction of phylogenetic trees,
in phenotype identification, and in analysis of microarray data. MVC has been
studied extensively in the literature [8]. It is known to be NP-hard [9] for a long
time. Papadimitriou et al. [13] proved that VC is APX-complete, and Monien et
al. [12,3] gave an approximation algorithm for VC with ratio 1 − log log n

2 log n (n is
the number of vertices).

If furthermore, a vertex cover C induces a connected subgraph G[C], then
C is called a connected vertex cover (CVC). The Minimum Connected Vertex
Cover Problem (MCVC) is to find a CVC with minimum cardinality. MCVC
problem is an enforced version of MVC when certain connectivity constraints
are needed in some applications. For example, in routing and wavelength as-
signment (RWA) problem for optical networks, people select a suitable path and
wavelength among the many possible choices with the help of CVC. MCVC is
� Support in part by NSFC (60603003) and XJEDU. This work was done while this

author visited at University of Texas at Dallas.
�� Support in part by National Science Foundation under grants CCF-9208913 and

CCF-0728851.

B. Yang, D.-Z. Du, and C.A. Wang (Eds.): COCOA 2008, LNCS 5165, pp. 255–264, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

256 Z. Zhang, X. Gao, and W. Wu

also NP-hard. In fact, Garey and Johnson [7] showed that MCVC is as hard to
approximate as MVC. The currently best known approximation algorithms for
MCVC have performance ratio 2, which were given by Arkin et al. [2,14].

In this paper, we consider MCVC problem in Unit Disk Graphs (UDG). A
graph G is an UDG if each vertex of G is associated with the center of a disk
with diameter 1 on the plane, and two vertices u, v of G are adjacent if and
only if the two disks corresponding to u and v have non-empty intersection. In
another word, (u, v) ∈ E(G) if and only if the Euclidean distance between the
centers corresponding to u and v is at most 1. Such a set of unit disks on the
plane is called the geometric representation of G. When talking about a unit disk
graph in this paper, we assume that the geometric representation is given, since
it has been proved in [10] that determining whether a graph is a UDG is NP-
complete. UDG is widely used in wireless networks, where each vertex represents
an idealized multi-hop radio based station, and the corresponding disk is the
communication range of the station. For MVC in UDG, there exists Polynomial
Time Approximation Scheme (PTAS). That is, for any positive real number ε,
there exists a (1 + ε)-approximation. In fact, Erlebach et al. [5,11] presented a
PTAS for Minimum Weight Vertex Cover (MWVC) in Disk Graph (DG), where
DG is a generalization of UDG, in which disks have different radiuses.

In this paper, we present the first PTAS for CVC on UDG, using partition
technique and shifting strategy. Such an approach was used for Steiner trees in
the plane [15]. A more complicated approach was used for connected dominating
set [4]. It should be noted that in [4], the technique is heavily based on the
property of 2-dimension. In other words, the technique cannot be applied to
higher dimensional space, e.g., unit ball graphs, which is also an important model
for wireless sensor networks. The technique presented in this paper can be applied
to any dimension. Therefore, it is actually proved in this paper that there exists
PTAS in unit n-dimensional ball graphs for any n.

The idea of the algorithm is: First, we take an area containing all vertices of
the graph, and partition it into small squares. For each small square, define the
inner area and the boundary area, such that the inner area and the boundary
area of a same small square has an overlap. For each component of the inner
area, compute a minimum CVC. To cover edges not in the inner area, use a
constant-approximation algorithm to compute a connected vertex cover C0 of
G, and union those vertices of C0 which belong to the ‘boundary area’ of the
partition into the above CVC’s. The overlap of inner area and boundary area
ensures the connectivity of the output. The shifting strategy is used to select a
partition such that the number of vertices of C0 falling into the boundary area
of this partition is small enough relative to ε.

The rest of this paper is organized as follows. In Section 2, we introduce
some terminologies used to describe the algorithm. In Section 3, the algorithm
is presented. In Section 4 we show the correctedness of our algorithm, analyze
the time complexity, and prove that it is a PTAS. A conclusion is given in
Section 5.

Polynomial Time Approximation Scheme 257

2 Preliminaries

In this section we introduce the symbols and definitions used for algorithm de-
scription.

For a given UDG G = (V, E), where |V | = n, we assume that all the disks are
located in a square plane Q = {(x, y)|0 ≤ x ≤ q, 0 ≤ y ≤ q}, where q is related
to n. Using partition strategy, we divide Q into squares each with side length
m × m. We set m = � 48ρ

ε �, where ρ is a constant which is the approximation
ratio of an APX for CVC (for example, ρ can be taken as 2 if we use the
2-approximation algorithm in [6]), and ε is an arbitrary positive number. Let
p = � q

m� + 1. Since we shall use shifting policy, we widen Q into a bigger region
˜Q = {(x, y)| − m ≤ x ≤ pm, −m ≤ y ≤ pm} (see Fig. 1).

������

����� �

	

Q
~

Q

Fig. 1. Partition for Graph G

Name this partition as P (0), and denote by P (a) the partition obtained from
P (0) by shifting it such that the left-bottom corner of P (a) is at (a−m, a−m),
for a = 0, 1, · · · , m − 1.

For each square e, we define the Inner area Ie and Boundary area Be (see
Fig. 2). If e = {(x, y)|im ≤ x ≤ (i + 1)m, jm ≤ y ≤ (j + 1)m},

Ie = {(x, y)|im + 1 ≤ x ≤ (i + 1)m − 1, jm + 1 ≤ y ≤ (j + 1)m − 1},

Be = e − {(x, y)|im + 2 ≤ x ≤ (i + 1)m − 2, jm + 2 ≤ y ≤ (j + 1)m − 2}.

Note that there is an overlap of Ie and Be.

258 Z. Zhang, X. Gao, and W. Wu

Fig. 2. Inner Region and Boundary Region for a Square

3 Algorithm Overview

For a partition P (a), denote by B(P (a)) =
⋃

e∈P (a) Be. The algorithm is exe-
cuted in two phases.

Phase I. Use a ρ-approximation to compute a CVC C0 for graph G. Let C0(a) =
C0 ∩B(P (a)) be the set of vertices of C0 lying in the boundary area of partition
P (a). Choose a∗ such that |C0(a∗)| = min |C0(a)|.

Phase II. For any square e ∈ P (a∗), denote by Ge the subgraph of G induced
by the vertices in Ie, and Comp(Ge) the set of connected components in Ge. For
each square e and each component H ∈ Comp(Ge), use exhaust search to find
a minimum CVC CH of H . Set Ce =

⋃

H∈Comp(Ge) CH .

Final Result Output C = C0(a∗) ∪ (
⋃

e∈P (a∗)
Ce).

4 Analysis of the Algorithm

In this section, we firstly prove the correctness of our algorithm, and then dis-
cuss the overall time complexity, that is, we prove that our algorithm runs in
polynomial time. Finally, we give the performance ratio of the algorithm, which
is (1 + ε).

4.1 Correctness

To prove that the output C of our algorithm is a CVC for graph G, we firstly
prove that C is a vertex cover for G, then prove that the induced subgraph G[C]
is connected.

Lemma 1. C is a vertex cover for G = (V, E).

Polynomial Time Approximation Scheme 259

Proof. For each square e, the inner area Ie and the boundary area Be have an
overlap with width 1. Since for any edge (v, w), the Euclidean distance between
v and w is less than or equal to 1, we see that both v and w belong to the
inner area Ie for some square e, or belong to the boundary area B(P (a∗)). In
the former case, the edge (v, w) is in a component H of Ge. By Phase II of the
algorithm, either v ∈ CH or w ∈ CH , meaning that(v, w) can be covered by
Ce ⊆ C. In the second case, by Phase I of the algorithm, C0 is a CVC of G.
Therefore either v ∈ C0(a∗) or w ∈ C0(a∗), meaning that (v, w) can be covered
by C0(a∗) ⊆ C. Thus we have proved that any edge in G is covered by C. So C
is a vertex cover of G.

Lemma 2. The induced subgraph G[C] is connected.

Proof. We prove this lemma by two steps. In step 1, we show that distinct
connected components in G[C0(a∗)] (if exist) can be connected through vertices
in

⋃

e∈P (a∗)
Ce. In step 2, we show that there is no other components of G[C] left

after step 1.
Step 1. Let H1 and H2 be two components in G[C0(a∗)] which are ‘clos-

est’ in G[C0] with each other. Then, there is a path P = (v1, v2, · · · , vt) of
G[C0] connecting H1 and H2 through the inner area of ‘one’ square e. With-
out loss of generalization, we may assume that v1 ∈ V (H1), vt ∈ V (H2) and
{v2, · · · , vt−1} ⊆ Ie. Fig. (see 3 for illustration).

H2

H1

v1
v2 vt-1

vt

v3

Fig. 3. An Illustration for H1 and H2

It is easy to see that v1 and vt belong to Ie ∩ Be, so P is in a connected
component H of Ge. Based on Phase II of our algorithm, P is covered by CH .
It follows that [either v1 ∈ CH or v2 ∈ CH], and [either vt−1 ∈ CH or vt ∈ CH].
Since G[CH] is connected, we see that H1 and H2 are connected through G[CH].

Step 2. Let ˜G be the component of G[C] containing all vertices of C0(a∗).
Such G̃ exists because of step 1. Suppose ˜G �= G[C], then there exists a square
e and a connected component H of Ge such that

260 Z. Zhang, X. Gao, and W. Wu

(i) CH ∩ C0(a∗) = ∅ and
(ii) no vertex of CH is adjacent with any vertex in C0(a∗).
Let x be a vertex in CH . Then either x ∈ C0 or x is adjacent with a vertex

y ∈ C0. We firstly assume that x ∈ C0. From (i), we know that x �∈ C0(a∗), so
x ∈ e\Be. Since G[C0] is connected, there is a path P in G[C0] connecting x
to the other parts of G outside of e. Suppose P = (v0, v1, ..., vt), where v0 = x,
vt �∈ e, and {v1, ..., vt−1} ⊆ e. Let i be the index such that vi is the first vertex
on P with vi ∈ Be. Then

(iii) vi ∈ C0(a∗);
(iv) vi ∈ Ie and thus vi and x belong to a same component of Ge, which is H ;
(v) both vi−1 and vi are in Ie, and hence the edge (vi−1, vi) are in H (note

that i ≥ 1 since v0 = x �∈ Be).
By (v) and Phase II of the algorithm, either vi ∈ CH or vi−1 ∈ CH . But this
contradicts (i) (ii) and (iii).

The case that x �∈ C0 but is adjacent with a vertex y ∈ C0 can be proved
similarly.

Therefore, we have proved that ˜G = G[C]. ��

Based on the conclusions from Lemma 1 and Lemma 2, we obtain the following
theorem showing the correctness of our algorithm.

Theorem 1. The output C of our algorithm is a connected vertex cover for G.

4.2 Time Complexity

In this subsection we consider the time complexity of our algorithm. Phase I of
the algorithm uses a polynomial time ρ-approximation to compute C0. Phase II
uses exhaust search which is the most time consuming part. We shall prove that
this part can also be executed in polynomial time, by implementing the relation
between vertex cover and independent set.

Lemma 3. The number of independent unit disks in an m×m square is at most
� (m+2)2

π �.

Proof. Enlarge the m × m square to an (m + 2) × (m + 2) square by adding a
boundary with width one. Then all the disks whose centers are in the m × m
square lie completely in the (m + 2) × (m + 2) square. Since each unit disk
occupies area π, the result follows from the independence assumption.

With the help of Lemma 3, we have the following theorem.

Theorem 2. The running time of our algorithm is nO(1/ε2), where n is the
number of vertices in the graph.

Proof. It is well known that a vertex set S is a vertex cover of a graph if and
only if its complement is an independent set. Thus by Lemma 3, each V (H)\CH

contains at most � (m+2)2

π � independent vertices, and therefore the exhaust search

Polynomial Time Approximation Scheme 261

for CH (which can be done by considering the complement of each independent

set in H) takes time at most
∑� (m+2)2

π �
k=0

(

nH

k

)

= n
O(m2)
H , where nH is the number

of vertices in H , and the total running time for phase II is at most
∑

e,H n
O(m2)
H =

(
∑

e,H nH

)O(m2) = nO(m2) = nO(1/ε2).

4.3 Performance

Here we prove that our algorithm is a (1 + ε)-approximation.

Definition 1. For two subgraphs G1, G2 of G, the distance between G1 and G2
is the length of a shortest path of G connecting G1 and G2 (where ‘length’ means
the number of edges on the path), denoted by dist(G1, G2).

In another word, if dist(G1, G2) = k, then G1 and G2 can be connected through
k − 1 vertices. If a vertex cover of a connected graph is not a connected vertex
cover, the distance between connected components of the subgraph induced by
the vertex cover is not far, as can be seen from the following lemma.

Lemma 4. Suppose H is a connected graph, and C is a vertex cover of H. If
H [C] is not connected, then there exist two components R1, R2 of H [C] such
that dist(R1, R2) = 2.

Proof. Let R1, R2 be two ‘closest’ connected components of G[C], and P =
(v0, v1, ..., vt) be a shortest path of H connecting R1 and R2, v0 ∈ V (R1) and
vt ∈ V (R2). If t ≥ 3, consider the edge (v1, v2). Since C covers H , we have
either v1 ∈ C or v2 ∈ C. Suppose, without loss of generality, that v1 ∈ C.
Let R3 be the component of G[C] containing v1. Then R3 �= R1 and R2, and
dist(R3, R2) < dist(R1, R2), contradicting our choice of R1 and R2.

The following lemma is well known in unit disk graph.

Lemma 5. Let G be a unit disk graph and u be a vertex in V (G). The there
are at most 5 independent vertices in N(u), where N(u) is the set of vertices
adjacent with u in G.

The following theorem shows that our algorithm is a PTAS.

Theorem 3. Let C∗ be an optimal CVC for G, and C be the output of our
algorithm. Then |C| ≤ (1 + ε)|C∗|.

Proof. Firstly, we prove that

|C0(a∗)| ≤ ε

6
|C∗|. (1)

When the partition shifts, a vertex of C0 belongs to at most 8 boundary areas
of B(P (a))’s. Therefore, we have,

262 Z. Zhang, X. Gao, and W. Wu

|C0(0)| + |C0(1)| + · · · + |C0(m − 1)| ≤ 8|C0|,

and thus

|C0(a∗)| ≤ 8ρ|C∗|
m

≤ ε

6
|C∗|.

Next, we shall add some vertices to C∗ such that the resulting set ˜C satisfies:
for each square e and

for each component H ∈ Comp(Ge), ˜C ∩ V (H) is a CVC of H . (2)

For a square e, let ˜Ce = C∗ ∩ Ie. It is easy to see that for each component
H ∈ Comp(Ge), ˜Ce ∩ V (H) covers H . Suppose there exists a component H ∈
Cpomp(Ge) such that requirement (2) is not satisfied. By Lemma 4, there are
two components R1, R2 of G[˜Ce ∩V (H)] such that R1 and R2 can be connected
through one vertex in V (H)\ ˜Ce. Add this vertex to ˜Ce. If the new ˜Ce still
does not satisfy requirement (2), continue as above to add vertices to merge
components. Suppose this is done k times before ˜Ce satisfies (2), then

| ˜Ce| ≤ |C∗ ∩ e| + k. (3)

On the other hand, we can show that

|C0(a∗) ∩ e| ≥ k

5
. (4)

For this purpose, we suppose that the components merged are in the order that
R1 with R2, R3 with R4, · · · , R2k−1 with R2k. For simplicity of presenting
the idea, we firstly assume that all the above Rj ’s are distinct components of
G[C∗ ∩ Ie]. For each i = 1, 2, · · · , k, let xi be a vertex in V (R2i−1) ∩ Be ∩ Ie,
such that xi is adjacent with a vertex yi ∈ Be \ Ie. Such xi exists since R2i−1 is
connected to the outer parts of e through C∗. Then either xi ∈ C0 or yi ∈ C0.
Set zi = xi if xi ∈ C0 and zi = yi otherwise. Note that both xi, yi ∈ Be. Hence
zi ∈ C0(a∗) ∩ e. A vertex may serve more than once as zi’s. For example, it is
possible that there are two indices i �= j such that the vertex of C0 covering
edges (xi, yi) and (xj , yj) is the same yi = yj ∈ C0. In this case, we see that xi

and xj are independent since they belong to different components of G[C∗ ∩ Ie].
Then by Lemma 5, such vertex serves at most 5 times as zi’s, and inequality (4)
follows. Next, suppose the Rj ’s are not all distinct. For example, suppose R3 is
the component obtained by merging R1 and R2. Then x3 can be chosen such
that x3 ∈ V (H2)∩Be ∩ Ie, which is independent with x1. In general we can find
k independent vertices x1, x3, ..., x2k−1 and thus (4) also holds in this case.

Combining inequalities (3) and (4), we have

| ˜Ce| ≤ |C∗ ∩ e| + 5|C0(a∗) ∩ e|. (5)

Polynomial Time Approximation Scheme 263

Since in Phase II of the algorithm, Ce is a ‘minimum’ vertex set satisfying
requirement (2) for each square e, we have |Ce| ≤ | ˜Ce|. Combining this with (1)
and (5), we have

|
⋃

e∈P (a∗)

Ce| =
⋃

e∈P (a∗)

|Ce| ≤
∑

e∈P (a∗)

| ˜Ce|

≤
∑

e∈P (a∗)

(

|C∗ ∩ e| + 5|C0(a∗) ∩ e|
)

= |C∗| + 5|C0(a∗)| ≤ (1 +
5ε

6
)|C∗|.

Hence
|C| ≤ |C0(a∗)| + |

⋃

e∈P (a∗)

Ce| ≤ (1 + ε)|C∗|.

5 Conclusion

In this paper, we presented the first polynomial time approximation scheme to
compute a connected vertex cover of a graph. The method used in this paper can
be applied to CVC problems in n-dimensional ball graphs. In a unit ball graph,
each vertex corresponds to the center of a unit ball in the n-dimensional space,
and two vertices are adjacent if and only if the Euclidean distance between them
is at most 1.

References

1. Abu-Khzam, F.N., et al.: Kernelization Algorithms for the Vertex Cover Problem:
Theory and Experiments. In: Proc.6th Workshop on Algorithm Engineering and
Experiments & 1st Workshop on Analytic Algorithmics and Combinatorics, pp.
62–69 (2004)

2. Arkin, E.M., Halldorsson, M.M., Hassin, R.: Approximating the Tree and Tour
Covers of a Graph. Inform. Process. Lett. 47, 275–282 (1993)

3. Bar-Yehuda, R., Even, S.: A local-ration Theorem for Approximating the Weighted
Vertex Cover Problem, Analysis and Design of Algorithms for Combinatorial Prob-
lems. Annals of Discrete Mathematics 25, 27–46 (1985)

4. Cheng, X., Huang, X., Li, D., Wu, W., Du, D.: A polynomial-time approxima-
tion scheme for minimum connected dominating set in ad hoc wireless networks.
Networks 42, 202–208 (2003)

5. Erlebach, T., Jansen, K., Seidel, E.: Polynomial-Time Approximation Schemes for
Geometric Intersection Graphs. SIAM J. Comput. 34(6), 1302–1323 (2005)

6. Fujito, T., Doi, T.: A 2-Approximation NC Algorithm for Connected Vertex Cover
and Tree Cover. Inform. Process. Lett. 90, 59–63 (2004)

7. Garey, M.R., Johnson, D.S.: The Rectilinear Steiner-Tree Problem is NP-
Complete. SIAM J. Appl. Math. 32, 826–834 (1977)

8. Hochbaum, D.H.: Approximation Algorithm for NP-hard Problems, PWS, Boston,
MA (1996)

264 Z. Zhang, X. Gao, and W. Wu

9. Karp, R.M.: Reducibility among Combinatorial Problems. In: Miller, R.E.,
Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum
Press, New York (1972)

10. Kratochvil, J.: Intersection graphs of noncrossing arc-connected sets in the plane.
In: North, S.C. (ed.) GD 1996. LNCS, vol. 1190, pp. 257–270. Springer, Heidelberg
(1997)

11. Li, X.Y., Wang, Y.: Simple Approximation Algorithms and PTASs for Various
Problems in Wireless Ad-Hoc Networks. Journal of Parallel and Distributed Com-
puting 66, 515–530 (2006)

12. Monien, B., Speckenmeyer, E.: Ramsey Numbers and an Approximation Algorithm
for the Vertex Cover Problem. Acta Informatica 22, 115–123 (1985)

13. Papadimitriou, C.H., Yannakakis, M.: Optimization, Approximation, and Com-
plexity Classes. J. Computer and System Sciences 43, 425–440 (1991)

14. Savage, C.: Depth-First Search and the Vertex Cover Problem. Inform. Process.
Lett. 14, 233–235 (1982)

15. Wang, L.S., Jiang, T.: An approximation scheme for some Steiner tree problems
in the plane. Networks 28(4), 187–193 (1996)

	Polynomial Time Approximation Scheme for Connected Vertex Cover in Unit Disk Graph
	Introduction
	Preliminaries
	Algorithm Overview
	Analysis of the Algorithm
	Correctness
	Time Complexity
	Performance

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

